A Generalization of Trapezoidal Fuzzy Numbers Based on Modal Interval Theory
نویسندگان
چکیده
We propose a generalization of trapezoidal fuzzy numbers based on modal interval theory, which we name “modal interval trapezoidal fuzzy numbers”. In this generalization, we accept that the alpha cuts associated with a trapezoidal fuzzy number can be modal intervals, also allowing that two interval modalities can be associated with a trapezoidal fuzzy number. In this context, it is difficult to maintain the traditional graphic representation of trapezoidal fuzzy numbers and we must use the interval plane in order to represent our modal interval trapezoidal fuzzy numbers graphically. Using this representation, we can correctly reflect the modality of the alpha cuts. We define some concepts from modal interval analysis and we study some of the related properties and structures, proving, among other things, that the inclusion relation provides a lattice structure on this set. We will also provide a semantic interpretation deduced from the modal interval extensions of real continuous functions and the semantic modal interval theorem. The application of modal intervals in the field of fuzzy numbers also provides a new perspective on and new applications of fuzzy numbers.
منابع مشابه
MULTI-ATTRIBUTE DECISION MAKING METHOD BASED ON BONFERRONI MEAN OPERATOR and possibility degree OF INTERVAL TYPE-2 TRAPEZOIDAL FUZZY SETS
This paper proposes a new approach based on Bonferroni mean operator and possibility degree to solve fuzzy multi-attribute decision making (FMADM) problems in which the attribute value takes the form of interval type-2 fuzzy numbers. We introduce the concepts of interval possibility mean value and present a new method for calculating the possibility degree of two interval trapezoidal type-2 fuz...
متن کاملRanking triangular interval-valued fuzzy numbers based on the relative preference relation
In this paper, we first use a fuzzy preference relation with a membership function representing preference degree forcomparing two interval-valued fuzzy numbers and then utilize a relative preference relation improved from the fuzzypreference relation to rank a set of interval-valued fuzzy numbers. Since the fuzzy preference relation is a total orderingrelation that satisfies reciprocal and tra...
متن کاملA Project Scheduling Method Based on Fuzzy Theory
In this paper a new method based on fuzzy theory is developed to solve the project scheduling problem under fuzzy environment. Assuming that the duration of activities are trapezoidal fuzzy numbers (TFN), in this method we compute several project characteristics such as earliest times, latest times, and, slack times in term of TFN. In this method, we introduce a new approach which we call modif...
متن کاملOn generalized fuzzy numbers
This paper first improves Chen and Hsieh’s definition of generalized fuzzy numbers, which makes it the generalization of definition of fuzzy numbers. Secondly, in terms of the generalized fuzzy numbers set, we introduce two different kinds of orders and arithmetic operations and metrics based on the λ-cutting sets or generalized λ-cutting sets, so that the generalized fuzzy numbers are integrat...
متن کاملPower harmonic aggregation operator with trapezoidal intuitionistic fuzzy numbers for solving MAGDM problems
Trapezoidal intuitionistic fuzzy numbers (TrIFNs) express abundant and flexible information in a suitable manner and are very useful to depict the decision information in the procedure of decision making. In this paper, some new aggregation operators, such as, trapezoidal intuitionistic fuzzy weighted power harmonic mean (TrIFWPHM) operator, trapezoidal intuitionistic fuzzy ordered weighted po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Symmetry
دوره 9 شماره
صفحات -
تاریخ انتشار 2017